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Abstract. Starting from the non-relativistic field theory of spin-1
2 fermions interacting through

the Abelian Chern–Simons term, we show that the quantized field theory leads, in the two-particle
sector, to a two-particle Aharonov–Bohm-like Schrödinger equation with an antisymmetric
(fermionic) wavefunction and without a delta function term. Calculating perturbatively the
field-theoretic two-particle scattering amplitude up to one-loop order, we show that, in contrast
to the scalar theory, the contribution of all the one-loop diagrams is finite and null, and that of
the tree level ones coincides with the exact amplitude. Further, the Pauli matter–magnetic field
interaction term is shown not to contribute to the amplitude to this order.

1. Introduction

Lately, the Aharonov–Bohm (AB) effect [1] has received again substantial attention in the
literature. The main reason behind this revival of interest is its relation to anyons [2], planar
particles with fractional spin and statistics. It was shown that such exotic statistics arise
when particles of conventional statistics are coupled to the Chern–Simons (CS) gauge field,
as this field creates an AB-like interaction that converts the particles to charge-flux-tube
composites (see the review [3] and the references therein).

Following this development, a Galilean field theory of scalar fields minimally coupled
to the CS gauge field was proposed [4], and shown to lead, in the two-particle sector, to a
Schr̈odinger equation similar to the AB equation.

This recent interest in the AB effect brought back the issue of the calculation of the
AB scattering amplitude in the framework of perturbation theory (the Born approximation)
which was known to fail for some time [5, 6], and many attempts to propose models
for which the Born approximation works were made [7–10]. In particular, the work [10]
considered the issue in the framework of Galilean scalar field theory [4], and demonstrated
through a perturbative calculation of the two-particle scattering amplitude up to one-loop
order, that this amplitude is non-renormalizable, unless a contact interaction is introduced,
which for a given strength of the interaction reduces the amplitude to the same order term
of the series expansion of the quantum mechanical AB amplitude. The same procedure was
generalized later [11] to the non-Abelian case, and similar results were obtained.

This encouraging development led people to address the issue from a more general
point of view. For instance, the works [12, 13] raised the interesting question of whether
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the exact (non-perturbative) quantum mechanical AB amplitude can be reproduced order
by order perturbatively in the framework of Galilean scalar field theory [4]. The work [12]
concludes that the full agreement is obtained, if the renormalized strength of the contact
interaction (induced by renormalization) is chosen to be related to the self-adjoint extension
parameter, for fixed renormalization scale. The conclusion of the more recent work [13] is
not in full aggreement with that of the [12], however. They show that the full agreement
can be obtained only in some special regimes. Thus, we see that the general problem in the
context of the non-relativistic scalar field theory is not satisfactorily settled yet.

In subsequent works [14], it was shown that if one starts from the relativistic Lagrangian,
one finds a renormalizable one-loop scattering amplitude which remains so in the non-
relativistic limit as well, thus reproducing the quantum-mechanical result without the need
to introduce a contact interaction term. It is not clear yet whether the issue (and the solution)
raised in [12, 13] would be the same in the case of relativistic field theories. Obviously,
there would be some fundamental differences between the non-relativistic and the relativistic
cases. For instance, in the non-relativistic case the necessity of a cut-off is not a relic of
some unknown ultraviolet physics, but rather an artefact of the perturbative methods used.
This is in contrast with the conventional wisdom on renormalization, whose natural habitat
is the relativistic field theories.

A quantum-mechanical treatment of the AB scattering of particles with spin from an
infinitely long solenoid was given by different authors [15, 16], and it was shown that the
first-order Born approximation in this case works. This problem is considered in this work
from a field-theoretic point of view, by considering the field theory of spin-1

2 fermions
interacting through the CS field.

This paper is organized as follows. In section 2, we introduce our model as the non-
relativistic limit of the classical theory of relativistic fermions interacting through the CS
gauge field. In section 3, we show that the two-particle sector of the quantum field
theory leads to an AB-like equation, and discuss the effect of the fermionic statistics
on the scattering amplitude. Section 4 is devoted to the quantum field theory-based
perturbative calculations of the two-particle scattering amplitude up to one-loop order, and
the demonstration of the role of the fermionic statistics in obtaining a finite, divergence-free
amplitude. We sum up our conclusions in section 5.

2. The model

We start with the action of classical relativistic Fermi fields in 2+ 1 dimensions coupled to
a gauge field whose action is given by the CS term (pure CS field),

S =
∫

d3x
(
ψ̄(i 6D −m)ψ + µ

2
εµνλA

µ∂νAλ
)
. (1)

Hereψ andψ†, are two-dimensional Grassmann spinor fields,

{ψ,ψ†} = ψψ† + ψ†ψ = 0 (2)

6D = γµDµ Dµ = ∂µ − ieAµ. (3)

The Dirac matrices in 2+ 1 dimensions are taken as [17],

γo = σ3 γi = iσi i = 1, 2 (4)

with the σ being the Pauli spin matrices. Theseγ -matrices satisfy

{γµ, γν} = 2gµν (5)

γµγν = gµν − iεµνλγ
λ (6)
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the metricgµν is defined as

AµA
µ = AµgµνAν gµν = diag(1,−1,−1, ) (7)

µ and e are two dimensionless coupling constants (we adopt the usual system of units in
which h̄ = c = 1). A transformation of the gauge field of the form:

Aµ→ 1√
µ
Aµ e→√µg (8)

allows us to have only one coupling constantg, in our theory. Then

S =
∫

d3x (ψ̄(i 6D −m)ψ + 1
2εµνλA

µ∂νAλ) (9)

with

Dµ = ∂µ − igAµ. (10)

The above action, with an additional Maxwell term was first considered by Schonfeld
[18] and Deseret al [19] where the canonical quantization of this theory was also carried
out. The path integral quantization of this theory, and its non-Abelian generalization was
recently carried out in [20, 21].

The classical equations follow from varying the action (9) with respect to the fields,
and read:

(i 6D −m)ψ = 0 (11)

εµνλ∂
νAλ = Jµ (12)

where

Jµ = −gψ̄γµψ µ = 0, 1, 2. (13)

Our aim is to derive the non-relativistic limit of the action (9), so, we write as usual
[22]

ψ(x, t) = exp{−imt}
(
φ(x, t)
χ(x, t)

)
. (14)

In 2+ 1 dimensions,φ(x, t) and χ(x, t) are single-component spinors. Substituting the
above parametrization into equation (11), expressing the lower component of the spinor in
terms of the upper one as in the usual routine, and going to the non-relativistic (NR) limit,
we reduce the action, equation (9) to

S =
∫

d3x φ∗(x, t)
(

iDt + D
2

2m
+ gB

2mc

)
φ(x, t))+ SCS (15)

whereB = ∇×A is the magnetic field. Then, expressing the CS Lagrangian in terms of
B also, we find the Lagrangian of our NR model

L = φ∗(x, t)
(

iDt + D
2

2m

)
φ(x, t)+ g

2mc
φ∗(x, t)Bφ(x, t)+ A0B − 1

2
A× ∂tA. (16)

Although as stated before, we are using the universal unit system in which ¯h = c = 1,
in this work, to make the non-relativistic approximation clearer, we kept the powers ofc
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explicitly in (15) and (16). Note that, with thec factor put back,D = ∇ − i g
c
A. In the

foregoing we will suppress them again. Whenever thec factors are to be seen explicitly,
one merely replacesg with g

c
. The Hamiltonian can be constructed in a straightforward

manner:

H =
∫

d3xH (17)

H = −φ∗D
2

2m
φ +− g

2m
φ∗Bφ − A0(B + gφ∗φ). (18)

The expression in the brackets in the last term in equation (18) above is just the well
known analogue of the Gauss’ law constraint in electrodynamics, and is the generator of
the infinitesimal spatial gauge transformations.A0 appears here as an arbitrary Lagrange
multiplier. One can solve the Gauss’ law constraint in a given gauge (in the Coulomb gauge
∇ ·A = 0, for instance) to express the gauge field in terms of matter fields, obtaining

A(x, t) = g∇×
∫

d3x ′G(x− x′)φ∗(x′, t)φ(x′, t) (19)

whereG(x− x′) is the Green function of the two-dimensional Laplacian,

G(x− x′) = 1

2π
ln |x− x′|. (20)

So, setting the constraint to zero, one obtains the NR Hamiltonian now as

H = −φ∗D
2

2m
φ − g

2m
φ∗Bφ. (21)

Integrating the first term by parts, and expressing the magnetic fieldB in terms of the matter
fields, acoording to (19), yields

H = 1

2m
(Dφ)∗ · (Dφ)+ g2

2m
(φ∗φ)2. (22)

The quantum theory is now constructed by imposing the equal-time anticommutation
relations (sinceφ is a Grassmann field) on the canonically conjugate fieldsφ andφ∗,

{φ(x, t), φ∗(x′, t)} = δ(x− x′). (23)

A Hamiltonian similar to (22), without the matter–magnetic field coupling term (usually
referred to as the Pauli term), and with bosonic statistics was considered by many authors
[4, 10]. A Hamiltonian with a term similar to the matter–magnetic field interaction, again
with bosonic statistics, that is put ‘by hand’, was considered first by Jackiw and Pi [23],
where the classical field theory was also investigated in addition to the quantum one. In the
following section, we are going to investigate the relation of our model Hamiltonian (22)
together with the anticommutation relations (23), to the AB scattering problem.

3. The Aharonov–Bohm equation

As we mentioned above, in previous works [4] a scalar field model, similar to our model
without the Pauli term, was shown to be a field theoretic formulation of the AB problem,
and a Schr̈odinger equation similar to the AB equation was derived for the two-particle
sector of the Hilbert space of this theory. Here, we are going to show that our model also
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gives a similar equation, with an antisymmetric two-particle wavefunction. However, since
we have Fermi statistics in our case, we believe that it would be useful to show in some
detail how to derive such an equation since this was not done in details in the literature for
theories with fermionic statistics.

In ordering the operators in (22), one should be careful in dealing with non-commuting
operators. We adopt a normal ordering prescription in which all the fieldsφ∗ appear to the
left of φ. However, noting the commutator

[φ(x),A(y)] = g∇×G(y − x)φ(x) (24)

and choosing a prescription in which∇×G(x) (which is ill-defined at the origin) vanishes
there [23], we see that theφ field commutes with the gauge field at the same point, and so
doesφ∗. It can also be shown that the components of the gauge field commute with each
other. So, there is no ordering ambiguity afflicting the Hamiltonian. The second term (the
Pauli term) in the Hamiltonian (22) vanishes upon normal ordering, since we have products
of the same NR fermionic field operators at the same spacetime point.

Now, the Heisenberg equation of motion forφ reads:

i∂tφ(x) = [φ(x),H ] = −1

2m
∇2φ(x)+ ig

m
A · ∇φ(x)

− ig2

2m

∫
d2y φ∗(y)∇×G(y − x)φ(x) · ∇φ(y)

+ ig2

2m

∫
d2y∇φ∗(y) · ∇×G(y − x)φ(x)φ(y)

+ g
2

2m
A(x) ·A(x)φ(x)+ 2g3

4πm

∫
d2y ρ(y)∇×G(y − x) ·A(y)φ(x)

+ g
4

2m

∫
d2y (∇×G(y − x))2ρ(y)φ(x). (25)

This is the same as the equation found in [23], except that we have fermionic statistics
here, which as a result leads to the absence of a term resulting from the matter–magnetic field
interaction. The number operatorN = ∫

d2x ρ(x) with ρ(x) = φ∗(x)φ(x) can be seen
to commute with the Hamiltonian, and therefore, they can be simultaneously diagonalized.
Their eigenstates are labelled as|E,N〉 [23]:

H |E,N〉 = E|E,N〉 (26)

N |E,N〉 = N |E,N〉. (27)

A vacuum state|�〉 is assumed to exist satisfying

φ(x)|�〉 = 0= 〈�|φ∗(x) (28)

H |�〉 = 0= N |�〉. (29)

TheN -particle state is defined as usual:

〈�|φ(x1)φ(x2) . . . φ(xN)|E,N〉 = UE(x1, . . .xN). (30)

Obviously, the stateUE(x1, . . .xN) is a fermionic wavefunction, antisymmetric under
the permutation of the positions of any two particles. TheN -body Schr̈odinger equation
can be derived by considering the commutator

〈�|[φ(x1) . . . φ(xN),H ]|E,N〉 = EUE(x1, . . .xN). (31)
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The two-body equation is the first non-trivial case of the above equation, and reads:

〈�|[φ(x1)φ(x2),H ]|E, 2〉 = EUE(x1,x2). (32)

Evaluating the commutator, using the Heisenberg equations of motion, one obtains

EUE(x1,x2) =
[−1

2m

2∑
i 6=j
(∇i − ig2∇i ×G(xi − xj ))2

]
UE(x1,x2). (33)

Using the explicit form of the Green function (equation (20)), and adopting the centre of
mass (cm) coordinates

R = r1+ r2

2
(34)

r = r1− r2 (35)

P = p1+ p2 (pi = −i∇i ) (36)

p = p1− p2

2
(37)

we find in polar coordinates(r, φ) (after separating the cm motion):[
1

r

∂

∂r
r
∂

∂r
+ 1

r2

(
∂

∂φ
+ ig2

2π

)2

+ k2

]
Uk(r, φ) = 0 (38)

wherek2 = m(E− K2

4m), andK2

4m is the energy of the cm. The above equation, which does not
contain the delta function term, is formally the same as the equation studied by Aharonov
and Bohm for the scattering of a charged particle off an infinitely long flux line. It also
looks like the equation obtained from a scalar field theory [4, 10]. This similarity might
be misleading, however, since there is a very crucial difference between this equation and
the AB equation. In the AB case, the wavefunction (that is regular at the origin) was taken
as a linear combination ofJ|m+α|(kr)eimφ (α = g2

2π in our notation), withm any positive
or negative integer, or zero. The wavefunction, being a single-particle wavefunction, was
required only to be regular at the origin, and be single-valued. Therefore, the above choice
of m as any integer, including zero, is the natural choice. In our case, however, we have a
two-particle wavefunction, which needs to satisfy a further symmetry requirement resulting
from the statistics of identical particles. In particular, the wavefunctionUk(r, φ) should be
antisymmetric under the exchange of the coordinates of the two particles, which in polar
coordinates means

Uk(r, φ + π) = −Uk(r, φ). (39)

This condition, then, imposes a restriction on the values ofm that enter the linear
combination of the functionsJ|m+α|(kr)eimφ , in thatm is now allowed to be an odd integer
only! In the case of the equation derived in [4] from a bosonic field theory, the statistical
considerations forcem to be an even integer (including zero). The effect of these statistical
considerations appears in a most pronounced manner, when one considers the evaluation of
the AB scattering amplitude perturbatively by employing the Born approximation. While a
detailed field theoretic perturbative calculation of the two-particle scattering amplitude up
to one-loop order is carried out in the next section, obtaining a result that coincides with the
same order term in the power series expansion of the exact amplitude, a brief discussion of
this issue is in order here. It was well known for many years [5, 6] that the first-order Born
approximation of the AB scattering amplitude fails to give the correct result. To be more
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explicit, let us note that the exact AB amplitude for non-forward scattering† (for |α| < 1)
is given as

f (k, φ) = −i(2πk)
−1
2 sinπα

[
cot

φ

2
− i sgn(α)

]
φ 6= 0. (40)

Employing the first-order Born approximation to calculate the amplitude to first order inα,
one, instead of obtaining

f (k, φ) = −iα
( π

2k

)1
2

[
cot

φ

2
− i sgn(α)

]
+O(α3) φ 6= 0, π (41)

obtains the incorrect result [6, 10]

f (k, φ) = −iα
( π

2k

)1
2

[
cot

φ

2

]
+O(α2) φ 6= 0, π (42)

in which the term non-analytic inα is missing. The failure of the Born approximation was
shown [6] to be due to the fact that the first-order Born amplitude misses the contribution
of the (m = 0) s-partial wave which is quadratic inα. Many works aiming at solving
this problem by different methods were published recently [7–10]. In particular, the works
[8, 10] attempted to resolve this issue in the context of a non-relativistic scalar field theory
by introducing a contact interaction term.

In our case, where we have two identical spin-1
2 fermions, the absence of them = 0

partial wave in the solution of the equation (38) suggests that the Born approximation might
work well. To show that this is indeed the case, first note that for identical particles, (40)
is to be modified. That is, one must symmetrize (antisymmetrize) this amplitude by adding
to (subtracting from) it the exchange amplitudef (φ − π) for the bosons (fermions) and
divide by

√
2 to preserve normalization. In doing so, one obtains for the fermionic case

f (k, φ) = −i(πk)−
1
2

sinπα

sinφ
φ 6= 0, π. (43)

We see from (43) that the fermionic amplitude does not contain the troublesome non-analytic
part inα. That the Born approximation works well in this case, is solely due to the fermionic
statistics.

4. One-loop perturbative calculations

In this section, we will carry out the the calculation of the scattering amplitude of two
NR fermions interactiong through the pure CS field, perturbatively up to one-loop order,
starting from the theory described by the action (16), namely the local action before
solving the Gauss’ law constraint to obtain (22), where the gauge field is expressed in
terms of the matter fields by the non-local expression (19). The motivation for doing this
calculation is to support the arguments that we presented in section 3. In particular, we
shall explicitly demonstrate that the diagrams coming from the Pauli term in the classical
action, equation (16) play no role in rendering the two-particle scattering amplitude finite
up to one-loop order, in contrast to some comments made in the literature [10] stating that
this term plays the role of the contact interaction term introduced into the scalar theory.

† Generally, the unitarity of theS-matrix of the scattering requires that the amplitude includes aδ-function in the
forward direction [24]. We omit this here, since we consider non-forward scattering.
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Figure 1. The vertices of the NR theory.

As our model (equation (16)) is similar, in a sense, to the scalar model considered
in [10], we obtain some diagrams that are similar to some of those in this reference.
However, we show that the fermionic nature of the fields in our model gives results that
are dramatically different from those .

Although, as is well known, there are no real CS photons, the existence of a CS
propagator enables one to formulate Feynman rules in which the gauge field propagator
appears in internal lines. This can be done, for example, by noting that theS-matrix of the
model is formally identical to that of models with ‘real’ gauge photons (the electromagnetic
field, for instance). This point has been discussed thoroughly in [20, 21], and some kind of
Wick-like theorem was constructed for the CS field.

To derive the Feynman rules, we first add to the action (16) the gauge fixing term

S = 1

ξ

∫
d3x (∇.A)2. (44)

Then the gauge field propagator (we choose to work in the Landau gauge,ξ = 0) is

Di0(k0,k) = −iD0i (k0,k) = −iεij
kj

|k2| (45)

and the matter field propagator is:

D(k0,k) = 1

k0− k2

2m + iε
. (46)

The vertices of the theory are (see figure 1):

00 = ig (47)

0i = ig

2m
(p + q)i (48)

0ij = −ig2

m
δij (49)

0Bi =
−g
2m

εij (p − q)j . (50)

The vertex0Bi does not appear in the scalar model. There, instead, one has a vertex that
comes from the contact interaction term [10].

The tree-level diagrams are shown in figure 2. In the cm frame, the amplitude of
diagram (a) is:

Atree
a =

−2ig2

m

P ∧ P ′
(P − P ′)2 − (P

′ → −P ′)
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Figure 2. The tree-level diagrams.

Figure 3. The one-loop diagrams.

= −ig2

m

sinθ

(1− cosθ)
− (θ → θ − π)

= −ig2

m
sinθ

(
1

(1− cosθ)
+ 1

(1+ cosθ)

)
(51)

whereP andP ′ are the relative incident and scattered momenta respectively, andθ is
the angle between the incident and scattered momenta in the cm frame. The amplitude of
diagram (b) is similarly

Atree
b =

−g2

m

(P − P ′)2
(P − P ′)2 − (P

′ → −P ′)

= −g
2

m
−
(−g2

m

)
= 0. (52)

In the scalar model, one has instead of diagram (b), a diagram coming from the contact
interaction vertex, with a non-vanishing contribution to the scattering amplitude. Our total
tree-level amplitude is therefore

Atree
tot =

−ig2

µm
sinθ

(
1

(1− cosθ)
+ 1

(1+ cosθ)

)
= −2ig2

µm sinθ
. (53)

The one-loop diagrams are depicted in figure 3.
Diagrams (a) and (b) also appear in the scalar theory, while diagrams (c) and (d), which
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arise from the Pauli term, do not. Instead, the scalar theory contains a diagram that comes
from the contact interaction term in the Lagrangian.

Consider diagram (a) first. This diagram is finite, and after carrying out thek0-integral
we obtain

A(1)a =
g4

m

∫
d2k

(2π)2

[
4(k ∧ P )(k ∧ P ′)

(k2− P 2− iε)(P + k)2(P ′ + k)2 − (P
′ → −P ′)

]
. (54)

The integrand can be written in the form [10]:

1

k2− P 2− iε

[
−1+ k2+ P 2

(k + P )2 +
k2+ P 2

(k + P ′)2 +
4k2PP ′ − (k2+ P 2)2

(k + P )2(k + P ′)2
]
− (P ′ → −P ′).

(55)

Performing the angular integration yields

A(1)a =
g4

m

∫
d(k2)

4π

[
1

k2− P 2− iε

(
−1+ (k2+ P 2)|k2− P 2|

(k2− P 2eiθ )(k2− P 2e−iθ )

)
− (θ → θ − π)

]
.

(56)

Carrying out thek2-integral, we finally obtain

A(1)a =
g4

4πm
ln

(
1+ cosθ

1− cosθ

)
. (57)

This result is different from the scalar case because of the antisymmetrization in the
amplitude.

We next consider the triangle diagram, figure 3(b). The amplitude after performing the
k0-integral reads

A
(1)
b =

−g4

m

∫
d2k

(2π)2

[
k · (k − P + P ′)
k2(k − P + P ′)2 − (P

′ → −P)′
]
. (58)

Performing the angular integration yields

A
(1)
b =

−g4

4πm

∫
d(k2)

[
1

2k2
+ 1

2|k2− (P − P ′)2| − (P
′ → −P ′)

]
. (59)

In the scalar case, the above integral with the exchange term added leads to a logarithmic
divergence [10], where it was regularized by the introduction of an ultraviolet cut-off. It was
this divergence that made the scalar theory of this reference non-renormalizable unless a
contact-interaction was introduced. In our case, however, as we are subtracting the exchange
amplitude, the divergences are nicely cancelled, yielding a finite result, namely

A(1) = −g
4

4πm
ln

(
1+ cosθ

1− cosθ

)
. (60)

The above amplitude is, not only finite, but also equals the minus of the amplitude of the
box diagram, equation (57); so they cancel.

The amplitude of diagram (c) after performing thek0-integral is:

A(1)c =
g4

m

∫
d2k

(2π)2

[
1

k2− P 2− iε
− (P ′ → −P ′)

]
. (61)

This integral is similar to the one that is generated from the contact interaction term in the
scalar theory (which was logarithmically divergent in that case). In our case, however, we
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note that this integral, being independent of the scattering angle vanishes upon subtracting
the exchange amplitude. Thus

A(1)c = 0. (62)

Finally, we consider diagram(d),which after carrying out thek0-integral reads:

A
(1)
d =

−4ig4

m

∫
d2k

(2π)2

[
k ∧ P ′

(P ′ + k)2(k2− P 2− iε)
− (P ′ → −P ′)

]
= −16ig4

m

∫
k dk

(2π)2

[
1

(k2− P 2− iε)

∫ 2π

0
dφ

kp sinφ

p2+ k2+ 2pk sinφ

−(θ → θ − π)
]
. (63)

Again, noting that there is noθ -dependence in the above integral, we see that it vanishes
upon subtracting the exchange term, thus

A
(1)
d = 0. (64)

Therefore, the total one-loop amplitude vanishes

A
(1)
tot = A(1)a + A(1)b + A(1)c + A(1)d = 0 (65)

and the contribution to the scattering amplitude comes only from the tree-level diagrams:

A(p, θ) = Atree
tot =

−2ig2

m sinθ
. (66)

To compare our amplitude with the term of the same order in the exact total AB
amplitude, equation (43), we develop the power series expansion of the latter, as

fAB(k, θ) = −i(πk)
−1
2

sinπα

sinθ

= −i(πk)
−1
2
πα

sinθ
+O(α3)

= (πk)
−1
2

4

−2ig2

m sinθ
+O(g6)

= (πk)
−1
2

4
A(p, θ)+O(g6) (67)

whereA(p, θ) is our amplitude given in (66).
So, the first-order term in the power series expansion of the AB scattering amplitude

calculated from the Schrödinger equation (38) coincides—up to kinematical factors—with
the result found perturbatively up to one-loop order.

Before leaving this section, we would like to emphasize again that the reason behind
getting a divergence-free, finite amplitude at one-loop order (i.e. the first-order Born
approximation) that is consistent with the exact amplitude, is solely the fermionic statistics
of the fields. This result confirms our arguments at the end of section 3 concerning the
validity of the Born approximation for fermions. In particular, we would like to stress
that the Pauli term (the matter–magnetic field interaction term) in the action of the theory
(equation (16)), made no contribution to the amplitude, contrary to the statement made in
[10], where it was mentioned that this term will play the role of the contact interaction term
in the scalar theory.
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5. Conclusions

We have considered a field theory model of NR spin-1
2 fermions interacting through an

Abelian CS gauge field. While the two-particle sector of the Hilbert space of the quantum
field theory leads to a two-particle AB-like Schrödinger equation that is formally similar
to the one resulting from similar bosonic theory, the fermionic statistics of the particles
gives rise to a different two-particle scattering amplitude. It was shown that as a direct
consequence of these statistical considerations, thes-partial wave does not contribute to the
scattering amplitude. Therefore, the first-order Born approximation, in contrast to the case
with scalar particles, works well in this case.

The classical action of our model, that is the NR limit of a relativistic fermionic action,
contains a Pauli (matter–magnetic field interaction) term. In the scalar field theory models
[10], the similar contact-interaction term plays a crucial role in the perturbative calculation
of the two-particle scattering amplitude at one-loop order, in that it makes the amplitude
renormalizable, and coincide with the AB amplitude to the same order. Therefore, we
carried out a perturbative calculation of the scattering amplitude of two identical fermions
up to one-loop order. We found, however, that the contribution of all the diagrams coming
from the Pauli term to the scattering amplitude vanishes upon antisymmetrizing, indicating
that this term plays no role in our theory. The contribution of the one-loop diagrams to
the resulting scattering amplitude is finite, free of divergences and null, and that of the
tree-level diagrams coincides with the exact AB amplitude to the same order. This result is
solely due to the fermionic statistics of the fields, i.e to the fact that one—having identical
fermions—needs to antisymmetrize the amplitude. It is also interesting to note here that
the contribution of the Pauli term to the Hamiltonian (22) from which the two-particle
Schr̈odinger equation was derived in the two-particle sector, vanished also upon normal
ordering the quantized fields, due, again, to the fermionic statistics of these fields.

We have also calculated the relativistic tree-level scattering amplitude of two fermions,
based on the theory given by the relativistic action (9). We would like to quote this result
for the sake of completeness. In this case there is a single interaction vertex, and thus a
single tree-level diagram. We have found that in the NR limit, keeping terms to O(

p

m
), one

obtains exactly the amplitude of the NR model given in equation (66).
After this work was completed, a work by Hagen [25] was brought to our attention,

which discusses the same problem from a rather more general point of view. In that
work the scattering of two non-identical fermions with possible different orientations of
the spins of the particles, is considered. Therefore, the Pauli term does contribute to both
the Schr̈odinger equation and the scattering amplitude in this case. The contribution of the
one-loop order diagrams to the scattering amplitude of two non-identical fermions was also
shown to be finite, and nullonly for the case of parallel spins of the two particles.
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